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Abstract. We study n-dimensional diffusive motion in an externally driven harmonic potential. For these
systems the probability distribution of the applied work is a Gaussian. We give explicit expressions for its
mean and variance, which are determined by a non-local integral kernel relating the time-derivatives of the
applied forces. As illustrations, we specialize our results to dragging a colloidal particle through a viscous
fluid and to stretching a Rouse polymer with different protocols.
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Nonequilibrium and irreversible thermodynamics

1 Introduction

Notions of classical thermodynamics like applied work and
exchanged heat have recently been extended to processes
on mesoscopic systems [1,2]. Typical examples are col-
loidal particles [3–6] and biopolymers like DNA or pro-
teins (for reviews, see [7–12]) driven out of equilibrium
by laser tweezers or atomic force microscopes. On these
length scales, the ever present thermal fluctuations imply
that quantities like the work W spent to induce config-
urational changes in a polymer fluctuate according to a
characteristic distribution function p(W ), which, in gen-
eral, depends on the specific non-equilibrium protocol of
the process. In a seminal paper, Jarzynski has shown that
this distribution function obeys a general constraint [2]

∫ +∞

−∞
dW p(W )e−βW = e−β∆F . (1)

The right-hand-side involves the equilibrium free energy
difference ∆F between the two states connected by the
non-equilibrium process in a thermal environment of in-
verse temperature β ≡ 1/kBT , where kB is Boltzmann’s
constant. The left-hand-side is the non-equilibrium aver-
age over many realizations of this process. Hence, as an
important application, the Jarzynski relation allows the
reconstruction of free energy profiles from non-equilibrium
work data extracted from experiments [13] or simulations
[14–18].

An interesting class of systems are those for which the
work distribution p(W ) is Gaussian. In this case, Jarzyn-
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ski’s relation implies that the mean W and the variance
σ2 are related by [2]

W = ∆F + (β/2)σ2. (2)

There are basically two scenarios for obtaining a Gaus-
sian distribution. For slow driving, one may expect that
the distribution is always Gaussian. For general diffusive
systems [19], this has indeed been shown with a construc-
tive proof which yields explicit expressions for mean and
variance [20].

This paper deals with the second general class of sys-
tems for which one expects a Gaussian distribution even
at fast driving. This is the case if the basic dynamics
is linear. We show that for general n-dimensional diffu-
sive motion in a harmonic potential under arbitrary time-
dependent forces the work distribution is Gaussian and
derive its mean and variance. As illustrations of our gen-
eral result, we consider the paradigmatic colloidal particle
dragged through a viscous fluid and, as a new result, a
Rouse polymer stretched by an external force.

2 General theory
2.1 Equations of motion

We consider a finite classical system coupled to a heat
reservoir at constant inverse temperature β. Let

z ≡ (z1, . . . , zn)T (3)

denote the state of a system with n degrees of freedom.
The potential energy is a quadratic form

V0(z) ≡ 1
2
zTTz, (4)
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where T ≡ (Tij) is a symmetric, time-independent cou-
pling tensor with inverse T−1.

The stochastic dynamics of the system is governed by
the Langevin equations [21]

żi = µij

[
−∂V0

∂zj
+ fj(t)

]
+ ηi(t), (5)

which describe a diffusive evolution of the state z in an
overdamped environment with constant, symmetric mo-
bility coefficients µ ≡ (µij). Summations are carried out
over same indices. We drive the system by applying time-
dependent external forces f(t). The Gaussian white noise
η(t) represents the interaction between system and heat
reservoir. It has the properties

〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 =
2
β
µijδ(t− t′), (6)

where the brackets 〈· · ·〉 denote an ensemble average.
The calculation of the work spent to drive the system

requires a time-dependent total energy including the driv-
ing forces,

V (z, t) ≡ 1
2
[z − h(t)]TT[z − h(t)] + V(t), (7)

with h(t) ≡ T−1f (t). For quasi-statically driven systems,
〈z(t)〉 = h(t) corresponds to the adiabatic trajectory. Be-
cause we restricted the external forces to be independent
of the state z, this total energy is quadratic, too. The
additional energy V(t) is a yet undetermined function in-
dependent of the state z. The equations of motion (5) now
read

żi = −µij
∂V

∂zj
+ ηi(t). (8)

In order to solve these equations, we introduce the tensor
L ≡ µT. It is positive definite L � 0 and symmetric. In
the following, we mark the components of tensors in the
basis where L becomes diagonal by a tilde. With the set
of ordered eigenvalues {εi : ε1 < ε2 < . . . } of L, the
equations of motion (8) decouple into normal modes

˙̃zi + εiz̃i = εih̃i(t) + η̃i(t), (9)

which are solved as

z̃i(t) =
∫ t

0

dt′ e−εi(t−t′)
[
εih̃i(t′) + η̃i(t′)

]
+ z̃i(0)e−εit.

(10)
Here, we identify τi ≡ 1/εi as the relaxation time of the
ith mode. The mode relaxing on the slowest time scale τ1
is called the fundamental mode.

2.2 Work

We drive the system by a time-dependent force during
the time interval 0 � t � ts. The total work performed

along one particular stochastic trajectory z(t) is the func-
tional [1,2]

W [z(t)] ≡
∫ ts

0

dt
∂V

∂t
(z(t), t), (11)

depending on the entire trajectory z(t).
The calculation of the work (11) using the total en-

ergy (7) is straightforward. We first write the change in
free energy for the entire process as

∆F ≡ 1
β

ln
∫

dz exp{−βV (z, 0)}∫
dz exp{−βV (z, ts)} = V(ts) − V(0). (12)

Gaussian integration in the numerator and denominator
gives identical contributions which cancel out, determin-
ing the additional energy V(t) as the free energy up to an
irrelevant constant.

Next, we calculate the work (11) as

W =
[
1
2
hT(t)Th(t) + V(t)

]ts

0

−
∫ ts

0

dt ḣ
T
(t)Tz(t). (13)

Inserting the trajectory (10) leads to

W = ∆F +
[
1
2
hT(t)Th(t)

]ts

0

− T̃ij

∫ ts

0

dt ˙̃hj(t)
∫ t

0

dt′ e−εi(t−t′)
[
εih̃i(t′) + η̃i(t′)

]

− T̃ij z̃i(0)
∫ ts

0

dt ˙̃
hj(t)e−εit.

(14)

To bring the work in a form more suitable for obtain-
ing its distribution, we interchange t ↔ t′ in the double-
integral and adjust the limits to keep the integration area
the same. By doing this, we can pull the expression in the
square brackets into the outer integral and perform an in-
tegration by parts. After introducing the vector a(t) with
components

ãi(t) ≡
∫ ts

t

dt′ ˙̃fi(t′)e−εi(t
′−t) (15)

we finally obtain

W = ∆F +
∫ ts

0

dt ãi(t)
˙̃
hi(t)

− ãi(0)
[
z̃i(0) − h̃i(0)

]
−

∫ ts

0

dt ãi(t)η̃i(t)

≡W +W0(z0) +W1[η(t)]. (16)

Hence, the total work (16) is the sum of three contribu-
tions

W ≡ ∆F +
∫ ts

0

dt aT(t)ḣ(t), (17)

W0(z0) ≡ −aT(0)[z0 − h(0)], (18)

W1[η(t)] ≡ −
∫ ts

0

dt aT(t)η(t). (19)
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The first contribution is independent of the trajectory.
The second contribution is the work depending on the ini-
tial state z0 ≡ z(0) whereas the third contribution origi-
nates from coupling to the heat reservoir.

2.3 Probability distribution of work

We now consider an ensemble of systems, each initially in
thermal equilibrium with the heat reservoir and evolving
according to the stochastic equations of motion (5). The
expectation value of a functional G resulting from such a
process, e.g. the work, is defined by [2]

〈G〉 ≡
∫

dz0 ρ0(z0)
∫

d[η(t)] P [η(t)]G[η(t), z0]. (20)

The average 〈· · ·〉 thus involves both the average over the
initial state z0 according to the canonical distribution

ρ0(z0) = e−βV (z0,0)
/∫

dz e−βV (z,0) (21)

and the path integral average over the noise η(t). The
statistical weight of a particular path is

P [η(t)] ∼ exp
{
−1

2

∫ ts

0

dt
∫ ts

0

dt′ ηT(t′)K−1(t, t′)η(t)
}
,

(22)
where K(t, t′) ≡ 〈

η(t)ηT(t′)
〉

is the correlation matrix
of the Gaussian stochastic variables. Inserting the equa-
tions (16)-(19) into equation (20) leads to 〈W0〉 = 0,
〈W1〉 = 0, and 〈W 〉 = W .

We now determine the distributions p0(W0) and
p1(W1) of the two stochastic contributions W0 and W1 to
the total work (16). In order to obtain p0(W0), we rather
calculate the characteristic function C0(χ) ≡ 〈

eiχW0
〉
,

which is given by

C0(χ) =
∫

dz0 ρ0(z0)eiχW0(z0) = exp
{
−1

2
χ2σ2

0

}
.

(23)
Hence, the distribution p0(W0) is a Gaussian with zero
mean and variance

σ2
0 =

1
β

aT(0)T−1a(0). (24)

This part corresponds to a system which is initially in
thermal equilibrium with the heat reservoir, and then
evolves further isolated from the reservoir.

Next, we obtain p1(W1) by investigating its charac-
teristic function C1(χ) ≡ 〈

eiχW1
〉
. In this case the system

stays coupled to the reservoir. Since the path integral

C1(χ) =
∫

d[η(t)] P [η(t)] exp{iχW1[η(t)]} (25)

is a simple multi-dimensional Gaussian integral, we can
solve it analytically and obtain

C1(χ) = exp
{
−1

2
χ2σ2

1

}
. (26)

The distribution p1(W1) is again a Gaussian with zero
mean and variance

σ2
1 =

2
β

∫ ts

0

dt aT(t)µa(t), (27)

which after integration by parts using equation (15) takes
the form

σ2
1 =

2
β

∫ ts

0

dt aT(t)ḣ(t) − σ2
0 . (28)

The resulting probability distribution p(W ) for the to-
tal work as the sum of two uncorrelated Gaussian stochas-
tic variables W0 and W1 is a Gaussian

p(W ) =
1√

2πσ2
exp

{
− (W −W )2

2σ2

}
. (29)

We already know its mean from equation (17) whereas
the variance is the sum

σ2 = σ2
0 + σ2

1 =
2
β

∫ ts

0

dt aT(t)ḣ(t). (30)

By comparing this with equation (17), we recover the re-
lation (2) between mean and variance as expected.

This explicit expression for the mean or variance is
the central result of our paper. For any given potential
energy V0(z) and any given time-dependent forces f(t),
these relations yield the resulting distribution of work.
Since ḣ(t) is linear in ḟ(t) and a(t) is linear but non-local
in ḟ (t), the variance (30) can formally be expressed as

σ2 =
2
β

∫ ts

0

dt
∫ ts

0

dt′ ḟ
T
(t′)M(t′ − t)ḟ (t) (31)

with the non-local integral kernel

M(t′ − t) ≡ Θ(t′ − t) exp{−L(t′ − t)}T−1, (32)

relating the time-derivatives of the external forces. The
function Θ(t′ − t) is the Heaviside step function.

The distribution of the dissipated work Wd ≡W−∆F
is the same Gaussian p(Wd) shifted by ∆F . Its mean and
variance become

W d =
β

2
σ2 =

∫ ts

0

dt
∫ ts

0

dt′ ḟ
T
(t′)M(t′ − t)ḟ(t). (33)

2.4 Slow driving regime

In the limiting case of slow but finite driving, the distribu-
tion of the dissipated work for arbitrary diffusive systems
has been derived previously [20]. For non-linear equations
of motion this distribution is also a Gaussian as long as
τ1 � ts holds. While in the present paper we consider the
fluctuation of the state z−h(t) around its mean adiabatic
trajectory h(t) using a path integral approach, in the case
of a general potential V (z, t) another route was pursued.
There we investigated the fluctuation of the energy

S(z, t) ≡ ∂V

∂t
(z, t) −

∫
dz′ ρ(z′, t)

∂V

∂t
(z′, t) (34)
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along the trajectory using a Fokker-Planck equation ap-
proach. Here

ρ(z, t) ≡ e−βV (z,t)
/ ∫

dz′ e−βV (z′,t) (35)

is the time-dependent, accompanying canonical distri-
bution, which can be defined irrespectively of whether
the system is in or out of thermal equilibrium with the
heat reservoir. With this definition, the integral in equa-
tion (34) corresponds to the adiabatic expectation value
of ∂V/∂t.

The variance of the slow driving Gaussian for the non-
linear equations of motion in a notation similar to equa-
tion (31) is [20]

σ2 =
2
β

∫ ts

0

dt
∫

dz S(z, t)M̂(t)S(z, t). (36)

In contrast to equation (32), the integral kernel is now an
operator

M̂(t) ≡ −βL̂−1(t)ρ(z, t) (37)

local in time. Here, L̂−1(t) is the inverse of the time-
dependent Fokker-Planck operator L̂(t) and both L̂(t) and
M̂(t) are non-hermitian operators acting to the left. The
minus sign in equation (37) arises from the fact that the
eigenvalues {εi} of L̂ are defined through L̂ψi = −εiψi

with eigenfunctions {ψi}.
We now prove that equation (36) yields the same vari-

ance as equation (31) does in the limiting case of slowly
driven harmonic systems. For linear systems, the Fokker-
Planck operator becomes [21]

L̂(t) ≡ ∂

∂zi

[
Lij [zj − hj(t)] +

µij

β

∂

∂zj

]
. (38)

The eigenvalues of operator L̂ are the same as of tensor L,
both defining the relaxation time scales of the system. It
is straightforward to calculate the variance (36) inserting
the energy (7) into equation (34). Skipping the algebra,
we just present the result as

σ2 =
2
β

∫ ts

0

dt ḟ
T
(t)(TL)−1ḟ(t). (39)

We can get the same expression from equation (31) by re-
placing the exponential time dependence in equation (32)
by a short-ranged interaction Θ(t′ − t) exp{L(t′ − t)} →
L−1δ(t′ − t). Then

M(t′ − t) = (TL)−1δ(t′ − t) (40)

leads to the same variance as equation (39).

3 Trapped particle

As a first illustration, we consider a colloidal particle in a
viscous fluid with friction coefficient γ trapped by an op-
tical or magnetic tweezer. This system has been analyzed
before both theoretically [3–5] and experimentally [6].

The position of the focus of the trap is u(t), whereas
the position of the particle is denoted by r. Near the focal
point we assume a linear force acting on the particle

F (r, t) = −k[r − u(t)], (41)

with effective strength k.
As the initial and final state we choose two positions

of the trap at distance L. We investigate the transient
non-equilibrium state, i.e., we first trap the particle and
let it equilibrate. After equilibration, we move the trap
at constant speed v = L/ts and drag the trapped par-
ticle through the viscous fluid. For this one-dimensional
movement, the total work

W =
∫ ts

0

dt u̇T(t)F (r(t), t) (42)

can be written in the form of equation (11). (for an com-
prehensive discussion of this quantity, see [4,5]) The total
energy in this case becomes

V (z, t) =
k

2
[z − h(t)]2, (43)

where z is now the coordinate of the particle and h(t) is
the position of the focal point in one dimension. Since the
free energy in this case is independent of the position h(t)
of the optical tweezer, ∆F = 0 follows.

The relaxation time is τ = γ/k. We calculate the mean
dissipated work (33) under an external force f(t) = kh(t)
and ḣ(t) = v as [3,20]

W d = L2k

[
τ

ts
−

(
τ

ts

)2 (
1 − e−ts/τ

)]
. (44)

With the solution for the mean path

z̄(t) = L− vτ
(
1 − e−t/τ

)
, (45)

we can rearrange equation (44) and obtain W d = γvz̄(ts).
The average dissipated work is, not surprisingly, given by a
friction force γv times the mean distance z̄(ts) the particle
is dragged.

4 Stretching a Rouse polymer

As a non-trivial example of our general result, we consider
stretching a Rouse polymer. A Rouse polymer is modeled
as a linear chain of N+1 monomers at ri connected by N
harmonic springs with strength k [22]. The polymer is in
solution in a viscous fluid with friction coefficient γ and
isotropic mobility µij ≡ δij/γ.

To stretch the polymer, we hold the first monomer
fixed (r0 ≡ 0) and manipulate the last one, e.g. by attach-
ing it to the cantilever of an AFM [23]. Another possibil-
ity is the use of an optical tweezer, where the end of the
polymer could be attached to a polystyrene bead which
follows the focus of the trap [13,24]. However, for the sake
of brevity, here we assume an ideally stiff connection so
that we directly manipulate the Nth monomer.
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4.1 The system

The total energy of the polymer is

V ({ri}) ≡ k

2

N∑
i=1

(ri − ri−1)2. (46)

We move rN ≡ u(t) according to a protocol u(t). For
one-dimensional pulling, the equations of motion decou-
ple. Motion perpendicular to the pulling direction remains
at equilibrium. We only have to consider one-dimensional
motion governed by

żi = γ−1[−Tijzj + fi(t)] + ηi(t), (47)

where the index runs i = 1, . . . , N − 1. Hence, the system
has n = N−1 degrees of freedom which equals the number
of free monomers. Inserting the energy (46), we get the
tridiagonal coupling matrix

T = k



2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

. . .


n×n

(48)

and the external forces as f(t) = (0, . . . , 0, ku(t))T.
By comparing the energy of the polymer (46) with the

general form (7), we obtain V(t) = (k̄/2)u2(t), where k̄ ≡
k/N . Because of relation (12), the free energy difference
is

∆F = V(ts) − V(0) = (k̄/2)[u2(ts) − u2(0)]. (49)

Hence, the whole polymer behaves like a single spring with
an effective spring constant k̄.

4.2 Dissipated work

To calculate the dissipated work (33) of a Rouse polymer,
we need the eigenvalues of L = µT, which are given by

εi = 2
k

γ

(
1 − cos

iπ

N

)
. (50)

The relaxation times are {τi = 1/εi} whereas the eigen-
values of the coupling tensor T are {γεi}. The components
of the integral kernel (32) become

M̃ij(t′ − t) = Θ(t′ − t)
τi
γ
e−(t′−t)/τiδij . (51)

Furthermore, we need the transformation matrix U, for
which the three tensors L, T, and M(t′ − t) become diag-
onal. Its components

Uij =

√
2
N

sin
iπj

N
(52)

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

u(t) z

cantilever

0

Fig. 1. Typical setup for a single-molecule experiment. A poly-
mer in solution is attached to the tip of the cantilever of an
AFM. It is then stretched by moving the AFM. Recording both
the force exert on the cantilever and the speed u̇(t), we can cal-
culate the work spent to stretch the polymer. The polymer is
modeled as a linear chain of harmonic springs.

are given by the eigenvectors of matrix (48). The trans-
formed external forces now read

f̃i(t) = Uijfj(t) =

√
2
N

sin
iπn

N
ku(t) (53)

and for one-dimensional pulling we, therefore, get a scalar
integral kernel

M(t′− t) = Θ(t′− t) 2
N

N−1∑
i=1

τi
γ

(
sin

iπ

N

)2

e−(t′−t)/τi (54)

resulting in the dissipated work (33)

W d = k2

∫ ts

0

dt
∫ ts

0

dt′ u̇(t′)M(t′ − t)u̇(t) (55)

for arbitrary driving protocols u(t). This is the exact ex-
pression for a finite Rouse polymer, which must be evalu-
ated numerically for arbitraryN . However, it is instructive
to discuss limiting cases analytically.

4.3 Slow driving and continuous limit

In the limiting case of slow driving (see Sect. 2.4), the
integral kernel M(t′− t) reduces to a δ-function and equa-
tion (54) becomes

M(t′ − t) = γ−1 2
N

N−1∑
i=1

(
τi sin

iπ

N

)2

δ(t′ − t). (56)

It is now feasible to evaluate the sum

2
N

N−1∑
i=1

(
τi sin

iπ

N

)2

=
1

2N
γ2

k2

N−1∑
i=1

(
cot

iπ

2N

)2

≈ N

3
γ2

k2

(57)
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by expanding cotx ≈ 1/x and using
∑

i 1/i2 → π2/6.
Comparison of the exact result with the approximation
shows a reasonable error 
 5% even for small polymer
sizes N 
 30, which vanishes for large N . Inserting the
approximated integral kernel into equation (55), the aver-
age dissipated work takes the particularly simple form

W d =
Nγ

3

∫ ts

0

dt u̇2(t) (58)

for slow driving.
In the Rouse model the index i is regarded as a con-

tinuous variable [22]. In this continuous limit the relax-
ation times are τi = τ1/i

2 with the fundamental time scale
τ1 = γN2/kπ2. Often the polymer size N cannot be con-
trolled exactly but is assumed to be large. Note in passing
that then we cannot distinguish a slow regime τ1 � ts
anymore as τ1 ∝ N2. We calculate the integral kernel by
replacing the summation in (54) by an integration with
the upper limit extended to infinity leading to

M(t′ − t) = Θ(t′ − t)
1 + exp{−τ∞/(t′ − t)}

k
√
π(t′ − t)/τ∞

. (59)

The kernel is now independent of N and determined by
the fastest time scale in the system τ∞ ≡ γ/4k alone.
Equation (59) agrees well with the exact solution (54) ex-
cept for small (t′ − t)/τ∞ < 1 (see Fig. 2). It diverges
because of the integration there is no cut-off of the fast
modes. This in turn would lead to a wrong behavior of
the mean dissipated work (55). It is therefore convenient
to use a regulated integral kernel

M(t′ − t) = Θ(t′ − t)k−1[1 + (π/4)(t′ − t)/τ∞]−1/2, (60)

which does not diverge. The quality of these approxima-
tions is compared to the exact result in Figure 2.

4.4 Linear and symmetric protocol

We specialize to a specific protocol and drive the Rouse
polymer by

u(t) ≡ vt, (61)

i.e., we pull at constant speed v and stretch the polymer to
a length L = vts. The expectation value of the dissipated
work (55) is

W d =
L2k2

γ

2
N

N−1∑
i=1

τi

(
sin

iπ

N

)2

×
[
τi
ts

−
(
τi
ts

)2 (
1 − e−ts/τi

)]
, (62)

whereas in the the slow driving regime it simply becomes

W d =
Nγ

3
vL =

π2

3N
L2k

τ1
ts

(63)
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Fig. 2. Comparison between the exact integral kernel M(t′−t)
for N = 1000 from equation (54) (solid line) and the two
continuous limit approximations (59) (dotted line) and (60)
(dashed line). The inset plot shows the mean dissipated work
as a function of the driving speed τ1/ts for two protocols ap-
plied to finite size polymers (N = 100). The solid curves mark
the linear driving protocol where the straight line is the slow
driving approximation (63). Respectively, the dashed curves
show the symmetric protocol (66) with ω = π/2ts. (Numerical
parameters are L = γ = k = 1, the mean dissipated work is
given in units of kBT )

following equation (58). This can be interpreted as a fric-
tion force Nγv/3 times the length L the polymer is ex-
tended. For a Gaussian chain with bond length b and the
end-to-end distance l =

√
Nb, we set k ≡ 3/βb2 [22]. Then

the mean dissipated work in the slow regime

W d =
π2

β

(
L

l

)2
τ1
ts

(64)

becomes proportional to the square of the stretching factor
L/l.

Another protocol, which was proposed in the context
of probing free energy landscapes, is the symmetric pro-
tocol [18]

u(t) = L sinωt. (65)

From equation (58), we easily obtain for the slow driving
regime

W d =
Nγ

3
L2ω

4
[2ωts + sin 2ωts] . (66)

To compare it with the linear protocol we set ω = π/2ts.
As we see in Figure 2, the non-linear driving results in
larger dissipation for the same final state.

4.5 Experimental requirements

We are not aware of any experiments yet which fit pre-
cisely the conditions we used to derive the explicit results
given in Section 4.4 for two paradigmatic experimental
protocols. First, single molecule experiments often involve
hydrodynamical effects, which are better described within
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the framework of the Zimm model. The equations of mo-
tion become non-linear which is beyond the scope of the
present paper. However, for a single-stranded DNA em-
bedded on a supported lipid membrane stretched by an
electric field, highly viscous but free draining Rouse dy-
namics has successfully been applied previously [25]. On
the other hand, using such a semi-flexible polymer as a
Gaussian chain one is limited in the range of extensions
available. If the overall size approaches the contour length,
semi-flexible elasticity becomes relevant.

In a quantitative comparison with experiments record-
ing the work is also an important issue. Usually, this is
achieved by measuring the force F (t) applied by the can-
tilever from which one obtains, for a given protocol u(t),
the work as

W =
∫ ts

0

dt u̇(t)F (t). (67)

In our set-up, where we control the position of the last
bead directly, this requires measuring the extension of the
last spring to get F (t). In practice, it will be better to
include the cantilever as a N + 1-th spring with a, in gen-
eral, different spring constant k′. If k′ is equal to k, the
explicit expressions (55) with (54) are directly applicable.
If k′ deviates significantly from k, one has to diagonal-
ize the corresponding T matrix. For any specific choice of
parameters, the explicit calculation of mean and variance
would then follow the route outlined in Section 4.2 for the
general model straightforwardly.

5 Summarizing perspective

For a n-dimensional diffusive system with harmonic inter-
nal energy driven by arbitrary time-dependent forces, we
have determined mean and variance of the resulting Gaus-
sian distribution for the work spent in a non-equilibrium
process. We have specialized the general result to the pre-
viously studied case of one degree of freedom in a har-
monic potential which corresponds to dragging a colloidal
particle through a viscous fluid. For stretching a Rouse
polymer we have discussed the dissipated work in detail
and derived simple expressions for two experimental pro-
tocols.

It will be interesting to investigate other systems with
a harmonic internal energy like semi-flexible polymers or
polymers with internal degrees of freedom. A generaliza-
tion to time-dependent coupling T = T(t) should be fea-
sible as well, since the equations of motion remain linear.

A challenging extension of our result would be to
include hydrodynamic effects like in the Zimm model for
polymer dynamics [22]. Since in this case the mobility
coefficients become dependent on the state z, the resulting

equations of motion are non-linear and the distribution
of work, a priori, no longer Gaussian [26]. Whether varia-
tional approaches or perturbative techniques in the corre-
sponding path integral are more promising to derive the
work distribution remains to be seen.
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